1,773 research outputs found

    X-ray Emission from the Weak-lined T Tauri Binary System KH 15D

    Full text link
    The unique eclipsing, weak-lined T Tauri star KH 15D has been detected as an X-ray source in a 95.7 ks exposure from the Chandra X-ray Observatory archives. A maximum X-ray luminosity of 1.5 x 10^{29} erg s1^{-1} is derived in the 0.5--8 keV band, corresponding to L_{X}/L_bol = 7.5 x 10^{-5}. Comparison with samples of stars of similar effective temperature in NGC 2264 and in the Orion Nebula Cluster shows that this is about an order of magnitude low for a typical star of its mass and age. We argue that the relatively low luminosity cannot be attributed to absorption along the line of sight but implies a real deficiency in X-ray production. Possible causes for this are considered in the context of a recently proposed eccentric binary model for KH 15D. In particular, we note that the visible component rotates rather slowly for a weak-lined T Tauri star and has possibly been pseudosynchronized by tidal interaction with the primary near periastron

    Hypothesis Testing in Feedforward Networks with Broadcast Failures

    Full text link
    Consider a countably infinite set of nodes, which sequentially make decisions between two given hypotheses. Each node takes a measurement of the underlying truth, observes the decisions from some immediate predecessors, and makes a decision between the given hypotheses. We consider two classes of broadcast failures: 1) each node broadcasts a decision to the other nodes, subject to random erasure in the form of a binary erasure channel; 2) each node broadcasts a randomly flipped decision to the other nodes in the form of a binary symmetric channel. We are interested in whether there exists a decision strategy consisting of a sequence of likelihood ratio tests such that the node decisions converge in probability to the underlying truth. In both cases, we show that if each node only learns from a bounded number of immediate predecessors, then there does not exist a decision strategy such that the decisions converge in probability to the underlying truth. However, in case 1, we show that if each node learns from an unboundedly growing number of predecessors, then the decisions converge in probability to the underlying truth, even when the erasure probabilities converge to 1. We also derive the convergence rate of the error probability. In case 2, we show that if each node learns from all of its previous predecessors, then the decisions converge in probability to the underlying truth when the flipping probabilities of the binary symmetric channels are bounded away from 1/2. In the case where the flipping probabilities converge to 1/2, we derive a necessary condition on the convergence rate of the flipping probabilities such that the decisions still converge to the underlying truth. We also explicitly characterize the relationship between the convergence rate of the error probability and the convergence rate of the flipping probabilities

    Modeling and Simulation of a Nuclear Fuel Element Test Section

    Get PDF
    "The Nuclear Thermal Rocket Element Environmental Simulator" test section closely simulates the internal operating conditions of a thermal nuclear rocket. The purpose of testing is to determine the ideal fuel rod characteristics for optimum thermal heat transfer to their hydrogen cooling/working fluid while still maintaining fuel rod structural integrity. Working fluid exhaust temperatures of up to 5,000 degrees Fahrenheit can be encountered. The exhaust gas is rendered inert and massively reduced in temperature for analysis using a combination of water cooling channels and cool N2 gas injectors in the H2-N2 mixer portion of the test section. An extensive thermal fluid analysis was performed in support of the engineering design of the H2-N2 mixer in order to determine the maximum "mass flow rate"-"operating temperature" curve of the fuel elements hydrogen exhaust gas based on the test facilities available cooling N2 mass flow rate as the limiting factor

    Submodularity and Optimality of Fusion Rules in Balanced Binary Relay Trees

    Full text link
    We study the distributed detection problem in a balanced binary relay tree, where the leaves of the tree are sensors generating binary messages. The root of the tree is a fusion center that makes the overall decision. Every other node in the tree is a fusion node that fuses two binary messages from its child nodes into a new binary message and sends it to the parent node at the next level. We assume that the fusion nodes at the same level use the same fusion rule. We call a string of fusion rules used at different levels a fusion strategy. We consider the problem of finding a fusion strategy that maximizes the reduction in the total error probability between the sensors and the fusion center. We formulate this problem as a deterministic dynamic program and express the solution in terms of Bellman's equations. We introduce the notion of stringsubmodularity and show that the reduction in the total error probability is a stringsubmodular function. Consequentially, we show that the greedy strategy, which only maximizes the level-wise reduction in the total error probability, is within a factor of the optimal strategy in terms of reduction in the total error probability

    Detection Performance in Balanced Binary Relay Trees with Node and Link Failures

    Full text link
    We study the distributed detection problem in the context of a balanced binary relay tree, where the leaves of the tree correspond to NN identical and independent sensors generating binary messages. The root of the tree is a fusion center making an overall decision. Every other node is a relay node that aggregates the messages received from its child nodes into a new message and sends it up toward the fusion center. We derive upper and lower bounds for the total error probability PNP_N as explicit functions of NN in the case where nodes and links fail with certain probabilities. These characterize the asymptotic decay rate of the total error probability as NN goes to infinity. Naturally, this decay rate is not larger than that in the non-failure case, which is N\sqrt N. However, we derive an explicit necessary and sufficient condition on the decay rate of the local failure probabilities pkp_k (combination of node and link failure probabilities at each level) such that the decay rate of the total error probability in the failure case is the same as that of the non-failure case. More precisely, we show that logPN1=Θ(N)\log P_N^{-1}=\Theta(\sqrt N) if and only if logpk1=Ω(2k/2)\log p_k^{-1}=\Omega(2^{k/2})

    Nuclear Thermal Rocket Element Environmental Simulator (NTREES) Upgrade Activities

    Get PDF
    To support the on-going nuclear thermal propulsion effort, a state-of-the-art non nuclear experimental test setup has been constructed to evaluate the performance characteristics of candidate fuel element materials and geometries in representative environments. The facility to perform this testing is referred to as the Nuclear Thermal Rocket Element Environment Simulator (NTREES). This device can simulate the environmental conditions (minus the radiation) to which nuclear rocket fuel components will be subjected during reactor operation. Test articles mounted in the simulator are inductively heated in such a manner so as to accurately reproduce the temperatures and heat fluxes which would normally occur as a result of nuclear fission and would be exposed to flowing hydrogen. Initial testing of a somewhat prototypical fuel element has been successfully performed in NTREES and the facility has now been shutdown to allow for an extensive reconfiguration of the facility which will result in a significant upgrade in its capabilitie

    A New Technique for Multidimensional Signal Compression

    Get PDF
    The problem of efficiently compressing a large number, L, of N dimensional signal vectors is considered. The approach suggested here achieves efficiencies over current pre-processing and Karhunen-Loeve techniques when both L and N are large

    A cost-minimization analysis of diuretic-based antihypertensive therapy reducing cardiovascular events in older adults with isolated systolic hypertension

    Get PDF
    BACKGROUND: Hypertension is among the most common chronic condition in middle-aged and older adults. Approximately 50 million Americans are currently diagnosed with this condition, and more than 18.7billionisspentonhypertensionmanagement,including18.7 billion is spent on hypertension management, including 3.8 billion for medications. There are numerous pharmacological agents that can be chosen to treat hypertension by physicians in clinical practices. The purpose of this study was to assess the cost of alternative antihypertensive treatments in older adults with isolated systolic hypertension (ISH). METHOD: Using the Systolic Hypertension in the Elderly Program (SHEP) and other data, a cost-minimization analysis was performed. The cost was presented as the cost of number-needed-to treat (NNT) of patients for 5 years to prevent one adverse event associated with cardiovascular disease (CVD). RESULT: It was found that the cost of 5 year NNT to prevent one adverse CVD event ranged widely from 6,843to6,843 to 37,408 in older patients with ISH. The incremental cost of the 5 year NNT was lower to treat older patients in the very high CVD risk group relative to patients in the lower CVD risk group, ranging from 456to456 to 15,511. Compared to the cost of the 5 year NNT of other commonly prescribed antihypertensive drugs, the cost of SHEP-based therapy is the lowest. The incremental costs of the 5 year NNT would be higher if other agents were used, ranging from 6,372to6,372 to 38,667 to prevent one CVD event relative to SHEP-based drug therapy. CONCLUSION: Antihypertensive therapy that is diuretic-based and that includes either low-dose reserpine or atenolol is an effective and relatively inexpensive strategy to prevent cardiovascular events in older adults with isolated systolic hypertension. Use of the diuretic-based therapy is the most cost-effective in patients at high risk for developing cardiovascular disease
    corecore